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Short surface waves in a canal: dependence of 
frequency on curvature 
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Davis has shown by means of a lengthy calculation that, for two-dimensional 
oscillations in a canal of width 2a, the mth eigenvalue has the form 

where h,/a and h2/a are the curvatures of the bounding cross-sectional curve C 
at its vertical intersections with the free surface. Here the same result is obtained 
more simply. 

1. Introduction and statement of the problem 
An infinitely long canal of uniform cross-section is filled with inviscid fluid 

in such a way that the sides of the canal are vertical at  the free surface. Surface 
tension is neglected and the motion is assumed to be two-dimensional, in planes 
normal to the generators of the canal; then a velocity potential exists. The motion 
is assumed to be so small that all the equations can be linearized. Rectangular 
Cartesian co-ordinates are taken, with the x axis horizontal in a plane of motion 
and the y axis vertical (y increasing with depth). The origin is taken at a paintiin 
the centre of the mean free surface. Then the mean free surface 3' is given by 

y = O ,  - a < x < a ,  

where 2a is the length of F in the x direction. The velocity potential $(x,y,'t) 
satisfies 

in the fluid, and the boundary conditions are 

aZ+/axa + a2$/ay2 = o (1.1) 

a+/& = 0 on the canal boundary C 

(where 8lan denotes differentiation normal to C) and 

Pq5la t2  - g a#/ay = 0 on the mean free surface F .  

We shall be concerned with the normal modes in which the potential is of the form 

q5@, y, 0 = #(x, Y) cos d- 

The free-surface boundary condition is then 

K$+a$l@ = 0 on F ,  
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where Ka = a2a/g ( = N ,  say) is an eigenparameter. It can be shown (see Davis 
1965) that there is a non-decreasing enumerably infinite set I?,, N2, . . . , of positive 
eigenvalues tending to infinity. (Obviously No = 0 is also an eigenvalue.) We 
shall be concerned with the asymptotic behaviour of N, when m + co, under the 
additional assumption that the curvatures a t  the end points (a ,  0) and ( - a, 0) of 
G are finite and equal to h,/a and &/a respectively. 

This problem has been studied by Davis in two papers. In  his first paper (Davis 
1965) he obtained a suitable integral equation for the values $,(C) of the potential 
$,(x, y) on the boundary curve C, and inferred that 

$2,(G) = e-Kzmu cos KZmx + dZm(x, y) 

$zm+l(C) = e-Kam+i ?J sin Kzm+lx + 82rn+,(X, Y) 

(1.3) 

(1.4) 

(for approximately symmetrical modes) and that 

(for approximately antisymmetrical modes), where the harmonic terms d,,(x, y) 
and 82m,.l(z, y) tend to  zero uniformly on C when m tends to  infinity. Thus the 
first terms in (1.3) and (1.4) meldominant near the free surface, but not neces- 
sarily elsewhere on C where the first terms are exponentially small. Davis 

(1.5) 
showed that 

where en, + 0 when m -+ 60, and obtained the stronger result 

N, = K,a = gmn+cm, 

cm = O(l/m). 

The leading terms in (1.3)-(1.5) evidently correspond t,o the case of parallel 
walls (Lamb 1932, $228, equations (12),  (13)). 

I n  a second paper (Davis 1969) the integral equation was studied in much more 
detail, and the improved result 

was obtained after a nine-page calculation. A simpler derivation of this result 
is desirable and will be given in the present note. It will be shown that (1.6) can 
be deduced from (1.3) and (1.4) with comparatively little effort. 

2. Asymptotic calculation of the eigenvalues 
Let the potential of the mth normal mode be denoted by # m ( ~ ,  y)cosvmt, 

where N,, = K,a = a&a/g is the corresponding eigenvalue. It will be convenient 
t o  consider odd and even modes separately; the calculations in the two cases are 
similar. Let us first consider the even modes, and let us write 

@2m(x,y) = ecKzmV cosK2,x; (2 .1)  

of. (1.3) above. Evidently OZm satisfies (1 .1)  and (1.2).  Green’s theorem (Lamb 
1932, $44: equation (2)) applied to the two harmonic functions $2na and @2m 

states that 
(2.2) 

aa2m 1 ( $ z r n ( X ,  Y) an (x, y) - ~Zm(x,  y) 
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where the integration is taken along the closed boundary C+F,  and where 
a/an denotes differentiation normal to the line element ds. Since both q52m 
and Q2, satisfy (1 .2 )  we see that there is no contribution from B, and since 
a+,/an = 0 on C we see that (2 .2 )  reduces to the equation 

where the integration is taken along the curved boundary only. This is the equa- 
tion that will be used to study N,. 

Since OZm(x, y) contains the exponential factor e-K2mg, it follows that N?,,,/an 
also contains this factor (see equation (2 .5 )  below); therefore only the neigh- 
bourhoods of the two highest points (a, 0) and ( - a, 0) of C contribute effectively 
to the integral (2 .3 ) .  We consider these in turn. 

Near (x, y ) = (a, 0) let the equation of C be given parametrically by 

x - a  = &), y = r@), 
where s is the arc length along C. Since the curvature is finite, we have 

From (I. 5) we have 

and 

From (1.3) we therefore have 

q52m = ( -  l )me-K~m~cos(~Zm+Kz,~)+62,(a+5,~) .  

The contribution from the neighbourhood of (a, 0) to the integra1~q5,,(~Qzm/a~) ds 
is then 

- 1 K2me-2K2m7 cos (eZm + K,, 6) [cos (eZm + K2,5) d6 - sin (eZm + K,,  t )  d r ]  

+ ( -  i ) m + l  K2me-Kzm4Szm(a+5,7) [ ~ o s ( e ~ ~ + K ~ ~ ~ ) d ~ - s i n ( ~ ~ ~ + K ~ ~ ~ ) d ~ ] .  

(2 .6 )  

(2 .7 )  

The integral (2 .6 )  is an explicit expression while the integral (2 .7 )  involves the 
unknown function 6,. We shall see that the former integral is the dominant one. 
The integral (2 .6 )  will now be estimated asymptotically for Kzma large and e2, 
small. (In the calculation the suffix 2 m  will be omitted.) Since [(q) varies more 
slowly than 7 near 7 = 0 (see equation (2 .4 ) ) ,  the integral can be estimated by 

s 

12-2 
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expanding all the functions of K t  in powers of K t ,  and then substituting for &(q) 
from (2.4). For example, 

e-2KTsin 2 K t d y  N e-z’$2Kc)z+1dy, s 0 (21+1)! 
of which the leading term is 

= - h1/4K2aa; 
here the equation 

Som ume-udu = m ! 

has been used. It is then not difficult to see that the integral (2.6) has for its lead- 
ing term the expression 

- K / ~ ~  e-2Kr [ d l  - (6 + K [ )  dyl 

= 4. + hl/8Ka. (2.8) 

Higher terms can be found if higher terms in the equation (2.4) for [ ( T )  are known. 
The integral (2.7) involving 6 cannot be explicitly estimated but a bound can be 
found. Clearly the absolute value of ( 2 . 7 )  is less than 

C 

= constant x max181 (2h,/Ka+ Is ] )  = (2h,/Ka+ lel)o(i) ,  (2.9) 

since S2na(a + t, q )  -+ 0 when m -+ co. On adding (2.8) and (2.9) it  is seen that the 
contribution to IQ2,(a(D2,/a.Ia) ds from the neighbourhood of (a,  0) is 

and similarly the contribution from ( -a, 0) is 

It follows from (2.3) that the sum of (2.10) and (2.11) must vanish, i.e. 

i.e. 
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which is the relation (1.6) for even rn. Similarly the relation can be proved for 
odd .rn from the equation 

where (D2m+l(~,  y) = e--Kzm+1Y sin K2m+1x. 

3. Discussion 
The foregoing calculation has shown how a second asymptotic approximation 

(1.6) for an eigenvalue can be obtained from a first approximation (1.3) for an 
eigenfunction. To obtain the same result, Davis (1969) went to a second approxi- 
mation for the eigenfunction, and thence to a second approximation for the 
eigenvalue. He found an ambiguity in the sign of the correction and determined 
this by a separate argument. In  the present note there is no ambiguity in sign. 

The use made of Green’s theorem in the present work may be compared with 
its earlier use in wave-making and scattering problems, where a good approxima- 
tion for wave-making and transmission coefficients was obtained from a com- 
paratively crude approximation for the potential. (See in particular, Ursell 
1961, $4.) In  these problems the second harmonic function in Green’s theorem 
was chosen to approximate as closely as possible to the Green’s function for the 
problem, and thus had a physical interpretation. In  our present problem thereis 
no obvious reason for choosing QVL as the second function. 

It was assumed that the curvature a t  both ends of the boundary C is finite 
and not zero, c/a N constant x (q/a)Z. A similar calculation can be made when 
C/a N constant x (r/a)l near both ends, for any I > 1.  
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